Rods progressively escape saturation to drive visual responses in daylight conditions.

This study reports the finding that rod photoreceptors can continue to function at much higher luminance than previously supposed. These investigators recorded from the retinas (and central nervous system) of mice genetically engineered to lack cone function and showed that responses could be recorded from photoreceptors and ganglion cells even in bright, bleaching light. These findings challenge earlier psychophysical measurements in humans (1), see (2) and mice (3), as well as electrical recordings from single mammalian photoreceptors (for example 4-6) and from other retinal neurons (7,8), all of which seem to show that rods saturate and become essentially non-functional in relatively dim background light. While previous electrical recordings were performed over relatively short time scales, these extended recordings show that rod responses might contribute to the retinal output over longer periods of bright illumination.

This Recommendation is of an article referenced in an F1000 Faculty Review also written by Gordon Fain and Alapakkam P. Sampath.

References

1. Saturation of the rod mechanism of the retina at high levels of stimulation
 Aguilier M, Stiles WS.
 https://doi.org/10.1080/713818657

3. Dark light, rod saturation, and the absolute and incremental sensitivity of mouse cone vision.
 Naarendorp F, Esdaille TM, Banden SM, Andrews-Labenski J, Gross OP, Pugh EN.
 J Neurosci. 2010 Sep 15; 30(37):12495-507
4. Role of guanylate cyclase-activating proteins (GCAPs) in setting the flash sensitivity of rod photoreceptors.
Mendez A, Burns ME, Sokal I, Dizhoor AM, Baehr W, Palczewski K, Baylor DA, Chen J.
Proc Natl Acad Sci USA. 2001 Aug 14; 98(17):9948-53
https://doi.org/10.1073/pnas.171308998 PMID: 11493703

5. Recoverin regulates light-dependent phosphodiesterase activity in retinal rods.
Makino CL, Dodd RL, Chen J, Burns ME, Roca A, Simon MI, Baylor DA.
J Gen Physiol. 2004 Jun; 123(6):729-41
https://doi.org/10.1085/jgp.200308994 PMID: 15173221

6. Channel modulation and the mechanism of light adaptation in mouse rods.
Chen J, Woodruff ML, Wang T, Concepcion FA, Tranchina D, Fain GL.
J Neurosci. 2010 Dec 1; 30(48):16232-40
https://doi.org/10.1523/JNEUROSCI.2868-10.2010 PMID: 21123569

7. A neuronal circuit for colour vision based on rod-cone opponency.
Joesch M, Meister M.
Nature. 2016 Apr 14; 532(7598):236-9
https://doi.org/10.1038/nature17158 PMID: 27049951

Nat Neurosci. 2014 Dec; 17(12):1728-35
https://doi.org/10.1038/nn.3852 PMID: 25344628

Disclosures
None declared

Cite this Recommendation: Copy to clipboard

10.3410/f.732188356.793545996